

Sbottom Searches

$$m_{\tilde{b}_{1,2}}^2 = \frac{1}{2} \left[m_{\tilde{b}_L}^2 + m_{\tilde{b}_R}^2 \mp \sqrt{(m_{\tilde{b}_L}^2 - m_{\tilde{b}_R}^2)^2 + 4m_b^2 (A_b - \mu \tan \beta)^2} \right]$$

Sbottom could be light due to large mass splitting between the eigenstates (large $tan\beta$)

Assume:

- $BR(\tilde{b_1} \to b\tilde{\chi_1^0}) = 100\%$
- R-parity conservation which leads to stable undetectable neutralino

Direct Sbottom Search

Sbottom Quark Production at the Tevatron

Direct Sbottom production: Gluino-pair production:

Sbottom Quarks from Gluino Decays Signature

Sbottom quarks could be pair produced at the Tevatron or in a scenario where the gluino is heavier than the sbottom, through decays of gluinos. Consider here search for second case, it yields a richer signature

$$\widetilde{g}\widetilde{g} \to (b\widetilde{b}_1)(b\widetilde{b}_1) \to (bb\widetilde{\chi}_1^0)(bb\widetilde{\chi}_1^0)$$

Assume:

- $m_{\widetilde{g}} > m_{\widetilde{b}} > m_{\widetilde{\chi}_1^0}$
- $m_t + m_{\tilde{\chi}_1^+} > \tilde{m}_{\tilde{b}_1} > m_{\tilde{\chi}_1^0}$
- $BR(\tilde{b_1} \to b\tilde{\chi_1^0}) = 100\%$

Motivation

- Large cross section
- Very distinctive signature
- · Accessible at Tevatron

ETat CDF

ET caused by particles escaping Central Drift Chambers

detection or by detector mismeasurement

Silicon Tracking Detector
Central Drift Chambers
Solenoid Coil /TOF
Hadronic Calorimeter
Muon Drift Chambers

Events

from non-detectable

- limited detector coverage
- reconstruction
- cosmics

B-Tagging at CDF

B hadrons fly macroscopic distance:

 $\Delta L = c \tau \cdot \beta \gamma$ with $c \tau \approx 450 \mu m$

Can be detected using CDFs
Silicon Vertex Detector

b-jets are identified using a secondary vertex tagging algorithm.

Tracks with large impact parameter do are selected and a vertex fitting algorithm is used to reconstruct a displaced vertex.

primary vertex

B-tagging Efficiency per Jet

Search Strategy

Event kinematics depend on the mass differences:

 $\Delta M = m(gluino) - m(sbottom) / \Delta m = m(sbottom) - m(neutralino)$

Assume fixed neutralino mass (60GeV/ c^2), Δm is large and consider different gluino/sbottom mass scenarios:

ΔM - large -> b from gluino energetic

χ boosted -> moderate

3rd b-jet energetic

CTEQ5L ISAJET pp→ gg

Highest-E_τ b-parton

2nd highest E_τ b-parton

3rd highest-E_τ b-parton

3rd highest-E_τ b-parton

 ΔM - small -> b from sbottom decay energetic χ not boosted -> larger $\not\!\!E_{\tau}$ 3^{rd} b-jet non-energetic

Perform separate two analyses: Excl. single tagged / Inclusive double tagged

Backgrounds

Backgrounds		Description	Reduction
QCD Fake tag rate parameterization from data + QCD HF MC	$b\overline{b}, c\overline{c}, \ q\overline{q}$	 QCD heavy flavor production mismeasured jet energy semileptonic b-decay o large 	· ∆∲(万,jets) cuts
W/Z+jets MC simulation	$W \to lv$ $Z \to ll, vv, b\overline{b}$	mismeasured jet energyneutrinos	isolated lepton vetob-tag requirement
Diboson MC simulation	$W \to lv$ $Z \to ll, vv, b\overline{b}$	neutrinosσ small	isolated lepton vetob-tag requirement
Top MC simulation	$t \to Wb$ \downarrow_{lv}	b-jetsneutrinosvery similar signature!	· isolated lepton veto

Event selection cuts

- Inclusive three jets Pt>15GeV $|\eta|$ <2
- $\not\!\!E_{\tau}$ > 35GeV $\Delta \phi$ ($\not\!\!E_{\tau}$,1-3jet) > 40° Heavy flavor tags

Use ∉rcut and lepton veto/requirement to define signal and control regions

Signal and Control Regions

Control Regions

€ _⊤ :	35-50 <i>G</i> eV	35-50 <i>G</i> eV	>50GeV
Lepton:	yes	no	yes
W/Z+jets/Diboson	3.9±0.8	11.0±1.2	9.6±1.2
Тор	11.7±0.2	8.2±0.1	35.2±0.3
QCD-multijet	19.2±4.1	129.6±17.3	10.9±4.5
Total background	34.8±4.2	148.8±17.3	55.7±4.7
Data	36	121	63

Comparison of standard model background predictions for inclusive single tagged events is in agreement with data

Statistical errors

Dominant systematics:

- -Tagging efficiency
- Energy scale

Signal Expectations

	Exclusive Single B-Tag	Inclusive Double B-Tag
EWK	5.66±0.76±1.72	0.61±0.21±0.19
TOP	6.18±0.12±1.42	1.84±0.06±0.46
QCD	4.57±1.64±0.57	0.18±0.08±0.05
Predicted	16.41±1.81±3.15	2.63±0.23±0.66
Observed	55	33
stat syst		

Expected Signal	Acceptance	Expected events
SingleTagged	7.7%	24.3
DoubleTagged	9.0%	28.6

Optimal sensitivity: ₹¬>80GeV

Similar signal acceptance for exclusive single tagged events and inclusive double tagged events

Large signal acceptance + small SM background

Results

Use 156pb⁻¹ of data taken 2002-2003

Sbottom Searches

Et .	η	ф	Tag
85.3 <i>G</i> eV	0.02	4.99	1
51.6 <i>G</i> eV	0.84	5.97	1
30.0 <i>G</i> eV	-0.83	1.42	0

Cross Section Limit

$\Delta M(gluino,sbottom) = 60GeV/c^2$

Gluino $\rightarrow \tilde{b_1}b$, 95% C.L. Cross Section Limit

Excl. single tag: Exclude 20.6 signal events at 95%C.L.

Incl. double tag: Exclude 8.7 signal events at 95% C.L.

Upper limit on signal events $\sigma^{\textit{Limit}} BR(\widetilde{g} \to b\widetilde{b}_1) = \frac{N^{\textit{Limit}}}{\varepsilon \cdot L}$ Assume branching ratio 100% $Signal \ selection \ efficiency \ Luminosity$

Now translate upper limit cross section to exclusion plane

Gluino/Sbottom Exclusion Plane

Exclusive single tag analysis more sensitive for nearly mass degenerated scenario

Exclude new parameter space

Obtain larger exclusion limit using inclusive double tagged events, due to better background suppression by similar signal acceptance

Similar limits expected also for also for larger neutralino mass scenarios

Conclusions

- \triangleright Heavy flavor jets and E_{\top} exciting combination to look for new physics
- Performed search for sbottom quarks from gluino decays
- > No excess found and new exclusion limit was set
- Vastly exceed Run I limits
- > Searches beyond the standard model are ongoing ...
- http://www-cdf.fnal.gov/physics/exotic/run2/gluino-sbottom-2003/bless_plots.html

Gluino/Sbottom Exclusion Plane

Gluino production allows significant extension of the best limits at high mass Sbottom and low mass neutralinos